
J. Fluid Mech. (2006), vol. 555, pp. 275–297. c© 2006 Cambridge University Press

doi:10.1017/S0022112006009153 Printed in the United Kingdom

275

Multiple coexisting states of liquid rope coiling

By N. M. RIBE1, H. E. HUPPERT2, M. A. HALLWORTH2,
M. HABIBI3,4 AND DANIEL BONN4,5

1Institut de Physique du Globe, UMR 7154 CNRS, 4 place Jussieu, 75252 Paris cédex 05, France
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A thin ‘rope’ of viscous fluid falling from a sufficient height onto a surface forms a
series of regular coils. Here we investigate theoretically and experimentally a curious
feature of this instability: the existence of multiple states with different frequencies
at a fixed value of the fall height. Using a numerical model based on asymptotic
‘thin rope’ theory, we determine curves of coiling frequency Ω vs. fall height H as
functions of the fluid viscosity ν, the diameter d of the injection hole, the volumetric
injection rate Q, and the acceleration due to gravity g. In addition to the three
coiling modes previously identified (viscous, gravitational and inertial), we find a new
multivalued ‘inertio-gravitational’ mode that occurs at heights intermediate between
gravitational and inertial coiling. In the limit when the rope is strongly stretched by
gravity and Π1 ≡ (ν5/gQ3)1/5 � 1, inertio-gravititational coiling occurs in the height
range O(Π−1/6

1 ) � H (g/ν2)1/3 � O(Π−5/48
1 ). The frequencies of the individual branches

are proportional to (g/H )1/2, and agree closely with the eigenfrequencies of a whirling
liquid string with negligible resistance to bending and twisting. The number of coex-
isting branches scales as Π

5/32
1 . The predictions of the numerical model are in excellent

agreement with laboratory experiments performed by two independent groups using
different apparatus and working fluids. The experiments further show that interbranch
transitions in the inertio-gravitational regime occur via an intermediate state with a
‘figure of eight’ geometry that changes the sense of rotation of the coiling.

1. Introduction
A thin stream of honey poured from a sufficient height forms a regular helical coil

as it approaches a piece of toast. This instability was called ‘liquid rope coiling’ by
Barnes & Woodcock (1958), whose pioneering work was the first in a series of
experimental studies spanning nearly 50 years (Barnes & Woodcock 1958; Barnes &
MacKenzie 1959; Cruickshank 1980; Cruickshank & Munson 1981; Huppert 1986;
Griffiths & Turner 1988; Mahadevan, Ryu & Samuel 1998; Maleki et al. 2004). Figure 1
shows the set-up used in most of these experiments, in which fluid with density ρ, vis-
cosity ν and surface tension coefficient γ is injected at a volumetric rate Q from a hole
of diameter d ≡ 2a0 and then falls a distance H onto a solid surface. In general, the
rope comprises a long nearly vertical ‘tail’ and a helical ‘coil’ of radius R near the plate.
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Figure 1. Steady coiling of a ‘rope’ of viscous corn syrup (photograph by N. Ribe.) Fluid
with density ρ, viscosity ν and surface tension coefficient γ is injected at volumetric rate Q
through a hole of diameter d ≡ 2a0 and falls a distance H onto a solid surface. The radius of
the rope at its point of contact with the plate is a1, the angular coiling frequency is Ω , and
the radius of the circle along which the rope is laid down is R.

The first important advance towards a theoretical understanding of liquid rope
coiling was Taylor’s (1968) recognition that the phenomenon is fundamentally a
buckling instability that requires a longitudinal compressive stress, like the buckling of
an elastic column under a load. Subsequently, the critical fall height and frequency at
the onset of coiling were determined using linear stability analysis (Cruickshank 1988;
Tchavdarov, Yarin & Radev 1993). Finite-amplitude coiling was first successfully ex-
plained by Mahadevan, Ryu & Samuel (2000), who showed that rapid coiling is gover-
ned by a balance between rotational inertia and viscous forces. More recent studies,
however, have shown that this scaling is only one among several possibilities. Using a
numerical model for a thin liquid rope, Ribe (2004) showed that coiling can occur in
three distinct dynamical regimes – viscous, gravitational, and inertial – depending on
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how the viscous forces in the helical coil are balanced. The existence of these three
regimes was demonstrated experimentally by Maleki et al. (2004).

Here we study what is surely the most curious and complex feature of liquid rope
coiling: the existence of multiple states with different frequencies at a fixed value
of the input parameters. Ribe (2004) predicted that multivalued curves of frequency
vs. height should be observed when coiling occurs in a gravitational-to-inertial
transitional regime corresponding to intermediate fall heights. Subsequently, Maleki
et al. (2004) observed an oscillation between two frequencies at a fixed fall height that
corresponded closely to the numerical predictions. This phenomenon is reminiscent
of one observed in (hitherto unpublished) experiments performed at the University
of Cambridge in 1986, which showed that steady coiling becomes time-dependent
at a critical value of the fall height. We demonstrate below that the time-dependence
observed in the Cambridge experiments and the multivaluedness documented by
Ribe (2004) and Maleki et al. (2004) are the same phenomenon. First, however, we
review briefly the broader context in which it occurs.

The dynamical regime in which coiling takes place is determined by the magnitudes
of the viscous (FV ), gravitational (FG) and inertial (FI ) forces per unit rope length
within the coil. These are (Mahadevan et al. 2000; Ribe 2004)

FV ∼ ρνa4
1U1R

−4, FG ∼ ρga2
1, FI ∼ ρa2

1U
2
1 R−1, (1.1)

where a1 is the radius of the rope within the coil and U1 ≡ Q/πa2
1 is the corresponding

axial velocity of the fluid. Because the rope radius is nearly constant in the coil,
we define a1 to be the radius at the point of contact with the plate. Each of the
forces (1.1) depends strongly on a1, which in turn is determined by the amount of
gravity-induced stretching that occurs in the tail. Because this stretching increases
strongly with the height H , the relative magnitudes of the forces FV , FG and FI

are themselves functions of H . As H increases, the coiling traverses a series of
distinct dynamical regimes characterized by different force balances in the coil.
Figure 2 shows how these regimes are reflected in curves of Ω(H ) and a1(H ) for the
parameters of one of the laboratory experiments reported by Maleki et al. (2004).
These curves were determined by solving numerically the thin-rope equations of Ribe
(2004) using the code AUTO 97 (Doedel et al. 2002). For simplicity, we neglected
surface tension, which typically modifies the coiling frequency by no more than a
few per cent for a surface tension coefficient γ ≈ 22 dyn cm−1 typical of silicone oil.
Surface tension is, however, important in related phenomena such as the thermal
bending of liquid jets by Marangoni stresses (Brenner & Parachuri 2003).

For small heights H (g/ν2)1/3 < 0.08, coiling occurs in the viscous (V) regime, in
which both gravity and inertia are negligible and the net viscous force on each fluid
element is zero. The coiling frequency decreases strongly with height, and the rope
radius is nearly constant because no gravity-induced stretching occurs – indeed, the
rope is slightly compressed against the plate (a1 > a0) for H (g/ν2)1/3 � 0.06. Because
the fluid velocity is determined kinematically by the injection speed, the coiling
frequency is independent of viscosity and is proportional to (Ribe 2004)

ΩV =
Q

Ha2
1

. (1.2)

For 0.08 � H (g/ν2)1/3 � 0.4, viscous forces in the coil are balanced by gravity
(FG ≈ FV � FI ), giving rise to gravitational (G) coiling with a frequency proportional
to (Ribe 2004)

ΩG =

(
gQ3

νa8
1

)1/4

, (1.3)
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Figure 2. Dimensionless coiling frequency Ω(ν/g2)1/3 (heavy solid line, left-hand scale) and
rope radius a1/a0 (light solid line, right-hand scale) as a function of dimensionless fall height
H (g/ν2)1/3, predicted numerically for Π1 = 7142 and Π2 = 3.67. Dimensionless groups Π1 and
Π2 are defined by (2.1). Dashed line at a1/a0 = 1 is for reference. Portions of the heavy
solid line representing the different coiling regimes are labelled: viscous (V), gravitational
(G), inertio-gravitational (IG), and inertial (I). Four turning points in the curve of frequency
vs. height are indicated, and the height and frequency of the first are denoted H1 and Ω1,
respectively.

which is identical to the frequency scale for folding of a rope confined to a plane
(Skorobogatiy & Mahadevan 2000). The rope’s radius is nearly constant (a1 ≈ a0)
at the lower end (0.08 � H (g/ν2)1/3 � 0.15) of the gravitational regime, implying the
seemingly paradoxical conclusion that gravitational stretching in the tail can be
negligible in ‘gravitational’ coiling. The paradox is resolved by noting that for a given
strain rate, the viscous forces associated with bending and twisting of a slender rope
are much smaller than those that accompany stretching. The influence of gravity is
therefore felt first in the (bending/twisting) coil and only later in the (stretching) tail,
and thus can be simultaneously dominant in the former and negligible in the latter.

For 0.4 � H (g/ν2)1/3 � 1.2, viscous forces in the coil are balanced by both gravity
and inertia, giving rise to a complex transitional regime. The curve of frequency vs.
height is now multivalued, comprising a series of roughly horizontal ‘steps’ connected
by ‘switchbacks’ with strong negative slopes. The curve exhibits four turning points
(labelled (i)–(iv) in figure 2) where it folds back on itself. The additional ‘wiggles’ at
larger values of H are not turning points because the slope of the curve is always
positive. For the example of figure 2, up to five frequencies are possible at a given
height. Near the turning points, the frequency obeys a new ‘inertio-gravitational’
(IG) scaling, the expression for which we determine below. The amplitude of the
folds in the curve of frequency vs. height gradually decreases until the curve becomes
smooth again at H (g/ν2)1/3 ≈ 1.2. Viscous forces in the coil are now balanced almost
entirely by inertia (FI ≈ FV � FG), giving rise to inertial (I) coiling with a frequency
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proportional to (Mahadevan et al. 2000)

ΩI =

(
Q4

νa10
1

)1/3

. (1.4)

The rope radius a1, unlike the frequency, decreases monotonically with height over the
entire height range, and is single-valued apart from a slight multiplicity in the range
0.5 � H (g/ν2)1/3 � 1.2 where Ω(H ) itself is multivalued. The decrease of a1 is due to
gravitational stretching of the tail with negligible vertical inertia, even in the ‘inertial’
regime 1.2 � H (g/ν2)1/3 � 2. Again, the apparent paradox is resolved by noting that
inertia, like gravity, can be simultaneously dominant in the coil and negligible in the
tail. Vertical inertia eventually becomes important in the tail as well when H (g/ν2)1/3

exceeds a value ≈ 3.
Our aim in the present study is to characterize systematically the multivalued regime

of liquid rope coiling using a combination of numerical modelling and laboratory
experiments. We first survey this regime numerically to generate maps of the height
and frequency of the first turning point as functions of the flow rate, the rope’s
initial radius, and the fluid viscosity. We then identify a new ‘inertio-gravitational’
mode within the multivalued regime and determine the scaling laws it obeys. Finally,
we compare the predictions of the numerical model with laboratory experiments
performed by two different groups using different apparatus and working fluids.

2. Cartography of multivalued coiling
We begin by determining the conditions under which the curve Ω(H ) is multivalued.

In a typical laboratory experiment, the fall height H is varied while the hole diameter
d , the flow rate Q, the viscosity ν, and the acceleration due to gravity g are held fixed.
In the absence of surface tension, therefore, a given experiment can be characterized
by the two dimensionless groups

Π1 =

(
ν5

gQ3

)1/5

, Π2 =

(
νQ

gd4

)1/4

. (2.1)

Each pair of values (Π1, Π2) is associated with a different curve of frequency vs. height.
A numerical survey of the (Π1, Π2)-plane shows that Ω(H ) is multivalued only if
Π1 exceeds a critical value Πcrit

1 . Figure 3(a)shows the critical curve Πcrit
1 (Π2) and

figures 3(b) and 3(c) show curves of frequency vs. height for selected reference values
(denoted A–D) of Π1 and Π2. The character of the transition from single-valued
to multi-valued coiling is evident from the curves for points A, B and C, which
all have Π1 = 104. Just above the critical curve (point A), Ω(H ) is single-valued,
but exhibits incipient ‘wiggles’. As Π2 decreases (points B and C), the curve is
progressively compressed in the horizontal direction, leading to the appearance of
folds and multivaluedness. For the range of Π1 shown in figure 3, the maximum
number of turning points is four, and of coexisting states, five (e.g. at point C).
However, these numbers increase without limit as Π1 → ∞, as we shall demonstrate
below.

Next, we map the height H1 and the frequency Ω1 of the first turning point as
functions of Π1 and Π2. The dynamical importance of the first turning point is
revealed by laboratory experiments which show that when H ≈ H1, coiling oscillates
between a state with frequency Ω1 and a state with a higher frequency (Maleki et al.
2004).
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Figure 3. (a) Critical curve for the onset of multivalued coiling in the (Π1, Π2)-plane. The
function Ω(H ) is single-valued above/to the left of the curve. Points A–D are reference points,
and point E shows the values of Π1 and Π2 used in figure 2. (b–c) Curves of frequency
vs. height for the reference points A–D in (a). The dashed line in panel C is at a value
of H (g/ν2)1/3 for which 5 distinct coiling states exist.

Standard dimensional analysis requires

H1 =

(
ν2

g

)1/3

G1(Π1, Π2), Ω1 =

(
g2

ν

)1/3

G2(Π1, Π2), (2.2)
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factor a1/a0 at the first turning point in the curve of frequency vs. height. Dimensionless
groups Π1 and Π2 are defined by (2.1).

where G1 and G2 are unknown functions. These were calculated numerically, and are
shown in figure 4. Also shown for reference (figure 4c) is the ‘thinning factor’ a1/a0

that measures the total amount of gravity-induced stretching in the tail.
The maps of figure 4 have simpler forms in the limit of strong gravitational

stretching (a1/a0 � 1), which obtains when the ‘buoyancy number’ B ≡ πa2
0gH 2/νQ >

300 (Ribe 2004). This limit corresponds to the lower right-hand portion of the (Π1,
Π2)-plane (figure 4c). Coiling in this limit is not influenced by the diameter d of
the injection hole. Accordingly, a (properly scaled) curve of coiling frequency vs. fall
height will depend only on Π1, and not on Π2 ≡ (νQ/g)1/4d−1. This is demonstrated
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portions of the curves correspond to gravitational and inertial coiling, respectively. (d) The
lower branches of the portions of the curves that lie to the left of the first turning point
shown in greater detail. The curve for Π1 = 106 has Π2 = 0.316. The vertical dashed lines are
at ΩI/ΩG = 1.26.

in figures 5(a)–5(c), which show log–log plots of the scaled coiling frequency Ω/ΩG

vs. ΩI/ΩG for three values of Π1. On each of these plots, purely gravitational coiling
(Ω ∝ ΩG) appears as a segment with zero slope at the left-hand side (ΩI/ΩG � 1),
and purely inertial coiling (Ω ∝ ΩI ) as a segment with unit slope at the right-hand
side (ΩI/ΩG � 1.) Because ΩG/ΩI ∝ a

−4/3
1 and a1 decreases with H (figure 2), the

ratio ΩI/ΩG can be thought of as a scaled fall height. A direct numerical calculation
shows that curves of Ω/ΩG vs. ΩI/ΩG for different values of Π2 are indistinguishable
from those shown in figures 5(a)–(c), as long as a1/a0 � 0.1.

3. Inertio-gravitational regime
The shapes of the curves shown in figure 5 differ significantly in the middle

range 0.6 � ΩI/ΩG � 2, where both the number and amplitude of the oscillations
increase with increasing Π1. However, a more detailed examination (figure 5d)
reveals a universal structure: the first turning point occurs at a nearly constant
value of ΩI/ΩG ≈ 1.26, and the curve approaching it is a power law with slope
−1.87 ≈ −15/8. These features indicate the existence of a new ‘inertio-gravitational’
coiling regime, whose nature we now investigate.
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0 . The curves for solutions S3 and S4 are identical to within the
plotting line width.

The character of the new regime is revealed most clearly by the shape of the
coiling rope. Figure 6(b) shows the lateral displacement x1(s) of the rope in the plane
containing the injection point and the contact point, for four numerical solutions
with Π1 = 106, Π2 = 0.316, and different values of H (g/ν2)1/3. These four solutions
are denoted by the points S1–S4 on the corresponding curve of frequency vs. height
(figure 6a). Figure 6(c) shows, for the same solutions, the moment M1(s) associated
with bending about a local basis vector d1 that is normal to the axis of the rope
(figure 7b). Solution S1 corresponds to pure gravitational coiling with negligible
inertia. Here the rope is nearly vertical except in a thin boundary layer near the
contact point s = � where viscous forces associated with bending are significant. As
H increases (solutions S2 and S3), however, the displacement of the rope becomes
significant along its whole length, even though bending is still confined to a thin
boundary layer near s = � (figure 6c).

A further important indication is obtained by comparing the structures of the
numerical solutions at the first two turning points S3 and S4 (figure 6a). The solutions
for M1(s) at points S3 and S4 are identical to within the width of the solid line in
figure 6(c). The corresponding displacements x1(s) and frequencies Ω , however, are
quite different (figure 6b). It thus appears that the dynamics of this regime is controlled
by the tail of the rope, and that the bending boundary layer plays a merely passive
role.
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Figure 7. Geometry of liquid rope coiling in the inertio-gravitational regime. ei (i = 1, 2, 3) are
Cartesian unit vectors fixed in a frame rotating with the rope, and di are orthogonal material
unit vectors defined at each point on its axis, d3 being the tangent vector. The parameters Q,
a0, H , R and Ω are defined as in figure 1. (a) Geometry of the tail, modelled as an extensible
string with negligible resistance to bending and twisting. This string lies in the plane normal to
e2, and d1 · e2 = 0. The lateral displacement of the axis from the vertical is y(s), where s is the
arclength measured from the injection point. (b) Geometry of the rope near the contact point.
Bending and twisting are important in a boundary layer of arcwise extent δ near this point.
Right at the contact, d1 is horizontal and points towards the center of the circle (of radius R)
along which the rope is laid down.

We now demonstrate that the dynamics of the tail provide the key to explaining
the multivaluedness of the frequency–height curve. Our numerical simulations show
that the rates of viscous dissipation associated with bending and twisting in the tail
are negligible compared to the dissipation rate associated with stretching. The tail
can therefore be regarded as a ‘liquid string’ with negligible resistance to bending
and twisting, whose motion is governed by a balance among gravity, the centrifugal
force, and the axial tension associated with stretching. The balance of gravity and the
centrifugal force normal to the tail requires

ρgA sin θ ∼ ρAΩ2y, (3.1)

where A is the area of the cross-section of the tail, θ is its inclination from the vertical,
and y is the lateral displacement of its axis. Because y ∼ R and sin θ ∼ R/H , (3.1)
implies that Ω is proportional to the scale

ΩIG =
( g

H

)1/2

, (3.2)

which is just the angular frequency of a simple pendulum.
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Further insight can be obtained by examining in more detail the dynamics of a
whirling liquid string, a simple model of which is sketched in figure 7(a). In the
Appendix, we show that the lateral displacement y of the axis of the string satisfies
the boundary-value problem

k−1 sin k(1 − s̃)y ′′ − y ′ + Ω̃2y = 0, y(0) = 0, y(1) finite, (3.3)

where primes denote differentiation with respect to the dimensionless arclength
s̃ = s/H and Ω̃ = Ω(H/g)1/2. The three terms in (3.3) represent the axis-normal
components of the viscous, gravitational and centrifugal forces, respectively, per unit
length of the string. The dimensionless parameter k measures the degree of gravity-
induced stretching of the string, and satisfies the transcendental equation

0 = 2B cos2 1
2
k − 3k2, (3.4)

where B is the buoyancy number defined earlier. The limit k =0 (B = 0) corresponds
to an unstretched string with constant radius, whereas a strongly stretched string has
k = π (B → ∞).

Equations (3.3) define a boundary-eigenvalue problem which has non-trivial
solutions only for particular values Ω̃n(k) of the frequency Ω̃ . Figure 8 shows the first
six of these eigenfrequencies as functions of k, determined using AUTO 97. In the
limit k = 0, we recover the classical solution for the eigenfrequencies of an inextensible
chain, which satisfy J0(2Ω̃n(0)) = 0, where J0 is the Bessel function of the first kind
of order 0.

To test whether these eigenfrequencies correspond to the multiple frequencies seen in
the full numerical solutions, we rescale the numerically predicted curves of frequency
vs. height to curves of Ω/ΩIG vs. ΩG/ΩIG. On a log–log plot, these rescaled curves
should exhibit distinct segments with slopes of unity and zero, corresponding to
gravitational (Ω ∝ ΩG) and inertio-gravitational (Ω ∝ ΩIG) coiling, respectively.
Figure 9 shows Ω/ΩIG vs. ΩG/ΩIG for Π1 = 103, 105 and 106. As expected, the
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are denoted by G and IG, respectively. The horizontal black bars (right) indicate the first six
eigenfrequencies of a strongly stretched (k = π) whirling liquid string (figure 8).

rescaled curves clearly display a transition from gravitational coiling on the left-hand
side to inertio-gravitational coiling on the right-hand side. Moreover, the multiple
frequencies in the rescaled curves correspond very closely to the whirling string
eigenfrequencies Ωn(π) in the ‘strong stretching’ limit k = π, the first six of which
are shown by the black bars at the right-hand side of figure 9. We conclude that a
rope coiling in the inertio-gravitational mode does indeed behave as a whirling liquid
string with negligible resistance to bending and twisting.

The pendulum frequency scale (3.2) also explains why the slope of the curves of
Ω/ΩG vs. ΩI/ΩG is −15/8 in the inertio-gravitational regime (figure 5d). In this
regime, the tail of the rope is stretched strongly (a1 � a0) by gravity, but the axial
inertia ρAUU ′ (unlike the centrifugal inertia ρAΩ2y) is negligible there. Under these
conditions, the radius a1 of the stretched tail can be determined analytically, and is
(Ribe 2004)

a1 =

(
3πνQ

2g

)1/2

H −1. (3.5)

Upon using (3.5) to eliminate H from the inertio-gravitational scaling law
Ω ∼ (g/H )1/2 and using the definitions of ΩG, ΩI and Π1, we obtain

Ω

ΩG

∼ Π
−5/32
1

(
ΩI

ΩG

)−15/8

, (3.6)

in agreement with figure 5(d).
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While the whirling string model explains well the frequencies of the multiple solution
branches, it cannot explain why these branches fold back on themselves at turning
points. We now demonstrate that this behaviour is due to the influence of inertia in
the bending boundary layer near the contact point. The geometry of this region is
sketched in figure 7(b). Despite our previous usage, it is not quite accurate in this case
to call the bending boundary layer a ‘coil’, because its arcwise extent δ is independent
of the radius R of the contact point. This is clear from figure 6, which shows that the
numerical solutions at the first two turning points S3 and S4 have different values of
R ≡ x1(H ), but identical distributions of the bending moment M1(s). To estimate δ,
consider the balance of forces acting within the boundary layer in the d1-direction.
Let the characteristic magnitudes of the viscous, gravitational and inertial forces per
unit rope length be FV , FG and FI , respectively. The dominant force balance in the
boundary layer is FV ∼ FG, or (Ribe 2004)

ρνA2(κ2U )′′′ ∼ ρgAd13, (3.7)

where d13 = d1 · e3 and primes denote differentiation with respect to s. Within the
boundary layer, d/ds ∼ δ−1, κ2 ∼ R−1, and d13 ∼ δ/R. Moreover, in the limit of strong
stretching U ≡ Q/A ∼ gH 2/ν. Finally, conservation of volume flux at the contact
point requires R ∼ U/Ω ∼ H 5/2g1/2/ν. Substitution of these expressions into (3.7)
yields

δ ∼
(

νQ

g

)1/4

, (3.8)

which is identical to the scale for the coil radius R in gravitational coiling (Ribe
2004). In view of (3.8) and the other expressions given above, the force balance (3.7)
takes the form

FV ∼ FG ∼ ρ

(
Q5ν9

g3H 9

)1/4

. (3.9)

Now all three contributions (axial, centrifugal and Coriolis) to the inertial force within
the boundary layer have the same order of magnitude FI ∼ ρAκ2U

2, or

FI ∼ ρQ
( g

H

)1/2

. (3.10)

By comparing (3.10) with (3.9), we see that inertia becomes comparable to the
gravitational and viscous forces in the boundary layer when

H ∼
(

ν9Q

g5

)1/16

. (3.11)

How is the height scale (3.11) related to the occurrence of turning points? To
determine this, recall that the numerical solutions show that the height H1 at which
the first turning point occurs corresponds to a critical value of ΩI/ΩG =1.26 (figure 5.)
By substituting into this expression the definitions (1.4) and (1.3) of ΩI and ΩG and
then eliminating a1 using (3.5), we obtain

H1 = 2.58

(
ν9Q

g5

)1/16

. (3.12)

The corresponding frequency Ω1 ≡ 1.34(g/H1)
1/2 is

Ω1 = 0.834

(
g21

ν9Q

)1/32

. (3.13)
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Figure 10. Distribution on the (Π1,Π2)-plane of the laboratory experiments discussed in
this study. Symbols indicate experiments performed at Cambridge using Golden Syrup (open
circles) and HYVIS-30 polybutene (open squares) and at Zanjan using silicone oil (solid
diamonds.) The solid line is the critical curve for the onset of multivalued coiling from figure 3.

The equivalence of (3.12) and (3.11) suggests that turning points in the frequency vs.
height curve occur when inertia becomes comparable to the viscous and gravitational
forces in the bending boundary layer near the contact point.

The scaling laws (3.12) and (3.13) were derived under the assumption of strong
stretching (a1/a0 � 1). Nevertheless, they give good approximations to the exact
numerical results of figure 4 for values of a1/a0 that are not especially small. For
a1/a0 � 0.25, for example, the maximum errors of (3.12) and (3.13) are 15% and 5%,
respectively, when Π1 � 100. For a1/a0 � 0.10, these errors decrease to 8% and 3%,
respectively.

4. Comparison with experiment
We now compare the predictions of the thin-rope numerical model with laboratory

data obtained at the University of Cambridge (1986–1987) and at the Institute for
Advanced Studies in Basic Sciences in Zanjan (2005.) Figure 10 shows the distribution
of these experiments (40 in number) on the (Π1, Π2)-plane.

The Cambridge and Zanjan experiments differ in several important ways: the
working fluids used, the injection method, and the data acquisition procedure. We
present the two sets of experiments and their results in chronological order.

4.1. The Cambridge experiments

In the Cambridge experiments, Tate & Lyle’s Golden Syrup (ρ = 1.44 g cm−3, ν =
700 cm2 s−1, γ = 78 dyn cm−1) or HYVIS-30 polybutene (ρ = 0.90 g cm−3, ν =
1000 cm2 s−1, γ =30 dyn cm−1) was allowed to fall freely from a hole in the bottom
of a reservoir onto a plate or (in some cases) a pool of the same fluid. The height
of the plate was adjustable, and was read off to within ±0.5 mm against a vertical
scale. The flow rates for a given fluid and hole diameter were calibrated prior to each
experiment by measuring the mass drained in a given time as a function of the depth
of fluid in the reservoir. The coiling frequency was measured by using a stopwatch to
record the time taken for a fixed number of revolutions (between 3 and 25.) As no
high-speed imaging was available at the time, measurements were restricted to cases
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Figure 11. Comparison of the Cambridge experiments with numerical predictions of the
thin-rope model. (a) Ratio of the observed fall height Hu at the onset of time dependence to
the numerically predicted height H1 of the first turning point. (b) Same as (a), but for the
frequency Ω . Symbols are the same as in figure 10. The vertical scale is logarithmic. Root
mean square errors for H1 and Ω1 are 14% and 6%, respectively. Error bars for Hu are smaller
than the plotting symbols, and those for Ωu were not reported.

where individual revolutions could be tracked by eye. The fall height reported in each
case was the distance from the hole in the reservoir to the plate, and was not corrected
for the presence of piled-up fluid beneath the coiling rope. In each experiment, the
fall height was gradually increased, and the critical height Hu at which the coiling
became unsteady was measured. The corresponding critical frequency Ωu, defined as
the frequency of steady coiling at a height just below Hu, was taken as equal to the
frequency measured at the last height before Hu.

Figure 11 compares these measured values to the numerically predicted height H1

and frequency Ω1 of the first turning point in the curve of frequency vs. height for
the same parameters. The effect of surface tension was included in these calculations.
The predicted and observed heights differ by up to about 30%, with an r.m.s. error of
14%. The agreement of the frequencies is much better (r.m.s. error ≈ 7%.) The poorer
agreement in the former case may be due in part to the use of uncorrected values of
the fall height. However, this would tend to make the ratio Hu/H1 too large, and no
such systematic bias is apparent in figure 11(a). We think that the more likely cause is
the inherent structure of the multivalued function Ω(H ), as will appear more clearly
below. For now, we interpret the comparisons of figure 11 as strong evidence that the
time-dependence observed in the Cambridge experiments reflects the multivaluedness
of Ω(H ) documented by Ribe (2004) and Maleki et al. (2004).

4.2. The Zanjan experiments

In the Zanjan experiments, silicone oil (ρ = 0.97 g cm−3, ν = 125, 300 or 1000 cm2 s−1,
γ = 21.5 dyn cm−1) was forcibly injected using a syringe pump controlled by a stepper
motor. The flow rate Q was determined to within ±4.5% by recording the volume of
fluid in the syringe as a function of time. This technique permitted access to portions
of the (Π1, Π2)-plane that are hard to reach with free (gravity-driven) injection.
The coiling frequency was determined by counting frames of movies taken with a
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videocamera (25 frames s−1.) For each point (Π1, Π2) investigated, separate sets of
measurements were obtained by increasing and decreasing the height over the range
of interest, and in one case additional measurements were made at randomly chosen
heights. The raw fall heights were corrected by subtracting the height of the pile
of fluid on the plate beneath the coil. This ensures proper comparability with the
numerical solutions, in which no pile forms because the fluid laid down on the
plate is instantaneously removed. To avoid unintentional bias, the experiments were
performed and the fall heights corrected before the corresponding curve of frequency
vs. height was calculated numerically. The effect of surface tension was included in
all calculations.

A disadvantage of forced injection is that unwanted ‘die-swell’ occurs in some cases
as the fluid exits the orifice. The radius of the tail then varies along the rope in
a way significantly different from that predicted by our numerical model. Die-swell
was negligible in all the experiments with ν = 1000 cm2 s−1, but significant ( ≈ 10–15%
increase in radius) in some experiments performed with lower viscosities. Here we
report only experiments for which die-swell did not exceed 10%.

Figure 12 shows the coiling frequency Ω measured as a function of the corrected
height H for the five points (Π1, Π2) shown as black diamonds in figure 10, together
with curves of Ω(H ) predicted numerically for the same parameters. The observations
and the numerical predictions agree extraordinarily well for experiments (b)–(e), which
were all performed with ν = 1000 cm2 s−1. The somewhat poorer agreement for case
(a) (ν =300 cm2 s−1) is probably due to die-swell, which was about 10% in this
experiment. The measurements are concentrated along the roughly horizontal steps
of the numerically predicted curves, leaving the ‘switchback’ portions in between
almost entirely empty. In all experiments, two coexisting coiling states with different
frequencies exist over a small but finite range of fall heights; in experiment (b),
we observed three such states at H ≈ 10.8 cm. In experiments (a)–(d), the states
observed along the first step in the curve extend right up to the first turning point.
In experiment (e), by contrast, the coiling ‘jumps’ to the second step before the first
turning point is reached.

Figure 12 suggests a likely reason why the critical heights observed in the Cambridge
experiments (figure 11a) agree less well with the numerics than the critical frequencies
do (figure 11b). First, the coexistence of two frequencies over a finite range of
fall heights suggests that oscillation between the two may also occur over a range
of heights. Yet because the steps in the curve Ω(H ) are roughly horizontal, the
frequency is almost independent of height in this range. The frequency of the onset
of time-dependence should therefore exhibit much less variability than the height.

The Zanjan experiments also provide insight into the mechanism of the transition
between coexisting coiling states. Figures 13(a) and 13(b) show the coil geometry for
the states with lower and higher frequency that coexist at a total (uncorrected) fall
height H = 7.1 cm with ν = 1000 cm2 s−1, d = 0.068 cm and Q =0.0042 cm3 s−1. Three
significant differences between the two cases are apparent. The coil radius R is smaller
at the higher frequency, because R = U1/Ω by definition and U1 (which depends only
on the fall height) is nearly the same for the two cases. The pile of fluid beneath the
coil is taller at the higher frequency, because rope laid down more rapidly can mount
higher before gravitational settling stops its ascent. The two coexisting states at a
given total height therefore have slightly different values of the effective (corrected)
fall height. Finally, the two states have opposite senses of rotation. This feature
appears to be universal: for fall heights within the multivalued range, coiling switches
back and forth repeatedly between low- and high-frequency states and changes its
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Figure 12. Comparison of experimentally measured (symbols) and numerically predicted
(solid lines) frequencies as functions of height for the Zanjan experiments. The fluid viscosity
was ν = 300 cm2 s−1 for experiment (a) and 1000 cm2 s−1 for experiments (b)–(e). Values of
(Π1,Π2) for each experiment are indicated in parentheses. Measurements were obtained in
series with H increasing (squares), decreasing (circles), and varied randomly (triangles.) Error
bars on H are smaller than the size of the symbols. Error bars on Ω , which in most cases do
not exceed ±5%, have been omitted for clarity.

sense of rotation each time (this behaviour has also been reported by M. Maleki,
private communication, 2004.) Each transition occurs via an intermediate state with a
‘figure-of-eight’ geometry (figure 13c). In general, the amplitude of the ‘8’ is about the
same as the diameter of the low-frequency coil (cf. figures 13a and 13c). The smaller
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(a) (b)

(c)

Figure 13. Geometry of coexisting coiling states in an experiment performed in Zanjan
with ν = 1000 cm2 s−1, d = 0.068 cm, Q = 0.0042 cm3 s−1 (Π1 = 6725, Π2 = 3.76). The total
(uncorrected) fall height is 7.1 cm, and the radius of the portion of the rope shown is 0.028 cm.
(a) low-frequency state; (b) high-frequency state; (c) transitional ‘figure-of-eight’ state.

high-frequency coil is sometimes centred on the preceding ‘8’, and sometimes forms
over one of its loops. What triggers these transitions is not clear from our experiments;
one possibility is irregularities in the pile of fluid beneath the coil (Maleki et al. 2004).

5. Discussion
The results obtained above allow us to construct a complete phase diagram for

liquid rope coiling in the limit of strong gravitational stretching (a1 � a0) and Π1 ≡
(ν5/gQ3)1/5 � 1. The diagram is best understood when displayed in the form of a
generic curve of the dimensionless frequency Ω(ν/g2)1/3 ≡ Ω̂ vs. the dimensionless fall
height H (g/ν2)1/3 ≡ Ĥ . Figure 14 shows such a curve (calculated for the particular
case Π1 = 105 and Π2 = 0.562), together with the important scalings that characterize
it. For small heights, coiling is purely gravitational with negligible inertia. The scaling
law for the frequency is Ω ∼ ΩG, which when rewritten using (3.5) takes the form
Ω̂ ∼ Ĥ 2Π

5/12
1 . The next regime to be encountered is inertio-gravitational (IG) coiling,

with a scaling law Ω̂ ∼ Ĥ −1/2. The transition from G to IG coiling occurs at a value
of H where ΩG ∼ ΩIG, or Ĥ ∼ Π

−1/6
1 . IG coiling persists until H reaches a value at

which inertial forces in the coil become comparable to the viscous and gravitational
forces there. That height is given by (3.12), which corresponds to Ĥ ∼ Π

−5/48
1 . The
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Figure 14. Phase diagram for liquid rope coiling in the asymptotic limit Π1 � 1. The solid
line shows the coiling frequency as a function of height for a reference case with Π1 = 105 and
Π2 = 0.562. The scaling laws for gravitational (G), inertio-gravitational (IG), and inertial (I)
coiling are indicated. The locations of the transitions between the laws are shown to order of

magnitude by dashed lines. The function K(Ĥ ) is shown in figure 15.

rather narrow range of heights over which IG coiling occurs contrasts with the large
ranges for the other three regimes.

Further increase in the fall height is now blocked while the rope passes through
a series of ‘whirling string’ eigenstates, whose frequencies are shown in figure 8.
The number N of such states that the coiling rope successively inhabits before purely
inertial coiling sets in can be estimated by a simple argument. The frequency at turning
point n is Ωn ∼ (g2/ν)1/3Π

5/96
1 Ω̃n, where Ω̃n is the dimensionless eigenfrequency

(figure 8). The corresponding radius of the contact point s = � of the rope is Rn ≡
U1/Ωn, or equivalently

Rn ∼ (ν2/g)1/3Π
−25/96
1 Ω̃−1

n , (5.1)

where we have used the relation U1 ∼ gH 2/ν and the expression (3.12) for the height
at the first turning point. According to (5.1), the radius Rn decreases as the eigenfre-
quency increases. Eventually, Rn becomes so small that it merges into the bending
boundary layer near the contact point, whose arcwise extent is δ ∼ (νQ/g)1/4. Because
Ω̃ ∼ n for large n, the merging occurs after an eigenstate (or turning point) whose
index and frequency scale as

N ∼ Π
5/32
1 , Ω̂N ∼ Π

5/24
1 . (5.2)
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Ĥ

Figure 15. Function K(Ĥ ) appearing in (5.3) that measures the inhibiting effect of axial
inertia on gravitational stretching of the tail of the rope.

For frequencies exceeding ΩN , coiling is dominantly inertial. To understand the
slope of the curve of frequency vs. height in this regime, it is necessary to note
that the axial inertia ρAUU ′ in the tail of the rope becomes significant for heights
H ∼ (ν2/g)1/3. The generalization of (3.5) that includes this effect is (Maleki et al.
2004)

a1 =

(
3πνQ

2g

)1/2

H −1K(Ĥ ). (5.3)

where the function K(Ĥ ) is shown in figure 15. The fact that K(Ĥ ) � 1 indicates
that inertia increases the radius a1 by inhibiting the gravitational stretching of the
tail. Upon substituting (5.3) into the scaling law Ω ∼ ΩI for inertial coiling, we obtain

Ω̂I ∼
[

Ĥ

K(Ĥ )

]10/3

Π
5/9
1 . (5.4)

Because K noticeably exceeds unity for Ĥ � 1.5 (figure 15), the slope of Ω(H ) at the
top right-hand side of figure 14 is slightly less than 10/3.

The multiple ‘spikes’ in the scaled curves of frequency vs. height in figure 9 strongly
suggest that IG coiling may reflect a resonance phenomenon. Recall that the frequency
of gravitational coiling is controlled by the dynamics in the ‘coil’ portion of the rope.
Therefore if the frequency set by the coil happens to be close to an eigenfrequency of
the tail, the coil will excite a resonant oscillation of the tail. Accordingly, the spikes
in figure 9 can be interpreted as resonant oscillations that occur when 0.5ΩG ≈ Ωn,
where 0.5ΩG is the frequency of gravitational coiling and Ωn is one of the whirling
string eigenfrequencies shown in figure 8.

An important problem remaining to be solved is that of the stability of our
numerical solutions. The Zanjan experiments (figure 12) show that observable states of
steady coiling in the multivalued regime are concentrated along the nearly horizontal
steps in the curve of frequency vs. height below turning points. None of the steady
states we observed lies on the steeply sloping switchback between the first two steps,
and only in two cases (figure 12a and 12b) did we observe states that may lie on
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the second (less steeply sloping) switchback. This suggests that states along the first
switchback (at least) may be unstable to small perturbations. The rather complicated
linear stability analysis required to answer this question is currently underway, and
will be reported separately.
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Appendix. Model for a steadily whirling liquid string
Consider a liquid string with density ρ and dynamic viscosity µ, injected at

volumetric rate Q from a circular hole of area A0 ≡ πa2
0 and rotating with a steady

angular velocity Ω about a vertical axis (figure 7a). Because the string can stretch, its
cross-sectional area A(s) and the fluid velocity U (s) ≡ Q/A(s) along it are functions
of the arclength s measured from the injection point s = 0. The string is assumed to
be nearly vertical, and its total length � ≈ H is maintained constant by continual
removal of the fluid that passes the cross-section s = H .

We assume that the string has negligible resistance to bending and twisting, so
that its motion is governed by a balance among gravity, inertia and the axial tension
associated with stretching. In the limit (gH 3/ν2)1/2 � 1, both the Coriolis force and
the axial inertia ρAU (Ud3)

′ are negligible, and inertia is dominantly centrifugal. The
components of the motion of the string in orthogonal horizontal directions are then
decoupled, and the string can be regarded, with no loss of generality, as being confined
to a plane. Let y(s) be the lateral displacement of the string from the vertical. Define
ei (i = 1, 2, 3) to be Cartesian unit vectors in a reference frame rotating with the
string, such that e3 points downward and e1 lies in the plane of the string. Let d i(s)
(i = 1, 2, 3) be orthogonal unit vectors defined at each point on the axis of the string,
such that d3 is tangent to the axis and d1 lies in the plane of the string. Because the
string is nearly vertical,

d1 ∼ e1 − y ′e3, d2 = e2, d3 ∼ e3 + y ′e1, (A 1)

where primes denote differentiation with respect to s. The rate of change of the
tangent vector d3 along the axis of the string is

d ′
3 = y ′′d1. (A 2)

The equation governing the motion of the string is

(Nd3)
′ + ρgAe3 = ρAΩ2ye2, (A 3)

where

N = 3µAU ′ (A 4)

is the axial viscous force and 3µ is the extensional viscosity. For a nearly vertical
string, the component of the centrifugal force in the axial (d3-) direction is negligible.
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The dominant force balance in that direction is therefore between gravity and viscous
resistance to stretching, or

0 = N ′ + ρgA. (A 5)

An analytical solution of (A 5) and (A 4) subject to the boundary conditions U (0) −
U0 = U ′(H ) = 0 was obtained by Ribe (2004), and is

U =
2

3k2

gH 2

ν
cos2 k(H − s)

2H
, (A 6)

where k satisfies the transcendental equation

0 = 2B cos2 1
2
k − 3k2 (A 7)

and B = gH 2/νU0. In the limit B � 1 that corresponds to strong stretching
(A(H ) � A0) of the string,

k ∼ π
[
1 −

√
6B−1/2 + 6B−1 + O

(
B−3/2

)]
. (A 8)

Projecting the force balance (A 3) onto the lateral basis vector d1 and making use
of the solution (A 6) for U , we obtain

0 =
gH

k
sin

k(H − s)

H
y ′′ − gy ′ + Ω2y. (A 9)

The first term in (A 9) is proportional to the viscous force normal to the axis that is
generated by the stretching of a curved string. In the limit k → 0, (A 9) reduces to
the classical equation governing the motion of a whirling inextensible string (Antman
1995). Because (A 9) has a regular singular point at s = H , the appropriate boundary
conditions are y(0) = 0 and the requirement that y(H ) be finite.
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